Nên hạ gấp mức nước đập Sông Tranh 2 !
Nên hạ gấp mức nước đập Sông Tranh 2 ! (*)
Nguyễn Khắc Nhẫn
Vài khái niệm cần biết
Trước khi vào đề, tôi xin phép nhắc lại đây vài danh từ, định nghĩa, công thức căn bản cần thiết.
Đứng về phương diện kỹ thuật, tất cả những loại đập trên thế giới có thể xếp gọn vào hai họ (famille) đập chính, tùy theo bản chất của phản ứng đối với lực đẩy của nước (poussée de l’eau).
-
Đập trọng lực (barrage poids ou gravité) : phản lực của trọng lượng.
-
Đập vòm (barrage voûte) - dày (voûte épaisse), mỏng (voûte mince) : phản lực ở hai bên bờ.
Như thế có nghĩa là đập trọng lực (Sông Tranh 2, Sơn La,) cần một nền móng (fondation) hết sức vững chắc và đập vòm cần đá núi hai bên bờ hết sức cứng rắn.
Tùy địa chất, chiều dài đập trọng lực có thể lớn, nhưng chiều dài (dây cung) của đập vòm phải ngắn (effet d’arc : hiệu ứng dây cung).
Đập trọng lực có thể làm bằng đất và/ hay đá (Đanhim và nhiều đập khác của ta đang vận hành) hoặc bê tông (Sông Tranh 2).
Lực đẩy của nước tỷ lệ với chiều cao H2 của mực nước trong hồ, (dung tích hồ nước không có ảnh hưởng như có người tưởng).
Công suất thô (puissance brute) của nhà máy thủy điện là :
(1) Pt = 9,81 Q x Ht
Pt (công suất) = kW, Q (lưu lượng) = m3/s , Ht (chiều cao thác nước) = m
Tiềm năng của hồ nước là :
(2) W = Vu x Ht/367 (3600 / 9,81= 367) (1 kWh = 3600 kjoules)
W (sản lượng điên) = kWh, Vu (dung tích hồ nước) = m3
Muốn dễ nhớ, lấy hiệu suất tổng quát rất thấp 0,73, thì con số 367 trở thành 500 (367/ 500 = 0,73)
Như thế ta có thể định nghĩa 1 kWh thủy điện là năng lượng do 1 m3 nước rơi từ độ cao 500 m xuống đất hay 500 m3 nước rơi từ độ cao 1 m.
Tiềm năng thủy điện Viêt Nam
Dựa
trên công thức (2) này, ta có thể
từ từ đi đến việc ước
tính tiềm năng thủy điện của
một nước và luôn cả thế
giới. Tiềm năng thủy điện của
Việt Nam và Pháp có thể xem như
tương đương với nhau :
|
Việt Nam |
Pháp |
Tiềm năng lý thuyết (TWh) |
300 |
270 |
Tiềm năng kỹ thuật (TWh) |
80 |
100 |
Tiềm năng kinh tế (TWh) |
52-70 |
72 |
Vì vấn đề môi trường và di tản của dân chúng, tiềm năng thủy điện kinh tế, tương đối, khó ước lượng chinh xác.
Trong nhiều năm qua, tỷ lệ thủy điện và điện khí của nước ta trong lượng điên sản xuất rất cao, lên đến 40% -50%. Công suất thiết kế thủy điện hiện nay là 9200 MW.
(Điều cần nhớ là, đối với các nhà máy thủy điện, phải lý luận với sản lượng điện bình quân hàng năm (TWh hay tỷ kWh) thay vì công suất đặt MW. Thiết kế những tổ máy lớn mà hay thiếu nước cho tua bin chạy cũng vô ích và phí của. Số giờ vận hành mỗi năm tùy thời tiết là chủ yếu. Sơn La có thể vận hành trung bình 4165 giờ / năm hơn Hòa Bình).
Tuy nhiên, tỷ lệ thủy điện Việt Nam sẽ xuống dần : 33,6% năm 2015, 26,6% năm 2020, 15,3% năm 2030 cũng như điện khí và dầu ( 24,9%, 19,6%, 12,7% ). Ngựơc lại, tỷ lệ điện than sẽ tăng lên ( 35,1%, 44,7% , 56, 1% ) !
Đập Sông Tranh 2 bị đe dọa hết sức nghiêm trọng
Đập Sông Tranh 2, cách Tam Kỳ (Quảng Nam) 60 km, là một đập trọng lực bê tông đằm lăn (RCC gravity), có chiều cao 96 m, dài 640 m. Với một diện tích thủy vực 11000 km2, dung tích hồ chứa 730 triệu m3 nước, thuộc loại lớn nhất miền Trung. Công suất thiết kế 2 tổ máy thủy điện là 190 MW. Vốn đầu tư trên 5000 tỷ đồng. Công trình bắt đầu hoạt động vào cuối năm 2010. Từ cuối năm 2011, người ta đã phát hiện các vết nứt, rò rỉ trên thân đập. Kỹ thuật bê tông đầm lăn, ít hao nước và xi măng, xuất hiện vào năm 1978, với mục tiêu làm giảm kinh phí và thời gian xây cất, nhưng dễ gây tai nạn nếu thi công cẩu thả, không đúng tiêu chuẩn kỹ thuật.
Cứ 20 m chiều dài thân đập, có một khe nhiệt, thiết kế theo chiều thẳng đứng. Giữa hai khe có các ống thu nước. Nguồn tin cho biết, trong số 30 khe nhiệt có nhiều khe bị lỗi kỹ thuật vì làm lệch trong quá trình thi công và một số ống thoát của khe nhiệt bị tắc, gây rò rỉ (trên 30 lit/giây). Theo Bộ xây dựng màng thu nước của đập có vấn đề nên nước vượt qua màng thu và lan ra ngoài theo các khe co giản.
Bộ xây dựng cũng vừa cho biết công trình thủy điện Sông Tranh 2 chưa được nghiệm thu đưa vào khai thác sử dụng, chỉ mới nghiệm thu tích nước
Trong suốt 2 tuần qua, chủ đầu tư EVN, nhiều chuyên gia giàu kinh nghiệm và đại diện các cơ quan trách nhiệm chính quyền và địa phương đã đến tận nơi, khảo sát, tìm hiểu nguyên nhân để đề nghị biện pháp xử lý sự cố.
Nước chảy ở đập như suối là một đe dọa hết sức nghiêm trọng. Các vết nứt lan rộng với thời gian vì vật liệu xung quanh sẽ tiếp tục bị xói mòn. Hiện nay cũng chưa biết rõ khe nứt vì thấm của bêtông hay vì các khe nhiệt.
Tôi thường nói đùa với sinh viên Trường Cao Đẳng Điện học Phú Thọ cũng như Đại học Bách khoa Grenoble rằng ta khiêu khích tạo hóa vì con sông đang bình thản chảy, thì ta lại xây đập, chận ngang dòng nước của nó! Điều khó là làm sao phòng thủ và bảo vệ công trình và dân chúng khi tạo hóa nổi giận, lên cơn ?
Một nguyên tắc căn bản mà tôi thường cho sinh viên biết là: đập có thể tồn tại lâu dài, nếu không thấm nước (bonne étanchéité) ở thượng lưu và tiêu thoát nước dễ dàng (bon drainage) ở hạ lưu. Để nước thấm qua đập là điều tối kị. Đập thiếu an toàn về nền móng thì nguy đến nơi !
Theo Cục kiểm định nhà nước về chất lượng thì tất cả các khâu, từ thiết kế, thi công, giám sát đến khai thác, vận hành đều có lỗi. Mãi đến nay, các cơ quan trách nhiệm và chuyên gia còn đang tranh cãi, nên những giải thích và biện pháp đưa ra chưa đủ sức thuyết phục để trấn an đồng bào miền Trung.
Tôi đồng ý với bạn đồng nghiệp EDF, kỹ sư Michel Hồ Tá Khanh : không nên tiếp tục ngăn chặn rò rỉ ở hạ lưu đập với resine Epoxy, vì như thế sẽ làm hỏng những khe nằm ngang và đập sẽ mất ổn định. Trong lúc chờ đợi, vì đập nứt và rò rỉ ở nhiều khe, ta có thể phủ géomembrane ở thượng lưu đập.
Nguyên nhân sự cố: động đất kích thích (séisme induit)
Ở xa, tôi không thể biết
có phải vì lí do thiết kế, thi
công hay vận hành. Những vết nứt,
theo tôi, có thể là do ở các
trận động đất kích thích
(séisme induit) 3,4°Richter ? liên tiếp
xảy ra, lúc hồ đập Sông Tranh 2
đón nhận dung tích nước đầu
tiên (1er remplissage) trong năm qua.
Thật ra, khi hồ đầy,
dưới áp lực, nước sẽ thấm
vào lớp đất bên dưới. Lượng
nước này sẽ thâm nhập vào
các lỗ hổng và các vết nứt
nhỏ của các khối đá cho đến
tận tâm của các đới đứt
gãy. Chính điều này gây nên
thay đổi lớn về ứng suất, làm
các đới đứt gãy mất ổn
định và do đó gây ra các
cơn chấn động kích thích. Kinh
nghiệm trên thế giới cho ta biết là
đối với loại đập trọng lực
hay đập vòm, lúc có động
đất thì đập dễ bị nứt
và các khe bị sai lệch. Đó là
trường hợp Sông Tranh 2.
Theo giáo sư Carsten Könke ở trường đại học Weimar của Đức: chúng ta không thể nói rằng cấu trúc của đập trọng lực dễ bị ảnh hưởng bởi động đất hơn cấu trúc đập vòm hay ngược lại. Điều đó phụ thuộc phần lớn vào tần số cộng hưởng riêng của công trình (sự truyền sóng trong vật liệu). Tần số đó càng gần với tần số lan truyền của động đất thì càng không tốt và đập có nhiều nguy cơ bị vỡ hơn.
Năm 1934, các kỹ sư Mỹ đã tỏ vẻ nghi ngờ về hiện tượng động đất kích thích lúc xây cất đập lớn Hoover. Những quan sát đầu tiên liên quan đến hiện tượng này bắt đầu từ 1935, lúc người ta cho nước vào hồ Mead lần đầu tiên, gây nên những rung chấn nhỏ thường xuyên trong vùng Nevada và Arizona.
Tại Pháp, các chuyên gia nhìn nhận có động đất kích thích 4,9° Richter xảy ra ngày 25/4/1963 ở đập Monteynard, với một dung tích nước (275 triệu m3), nhỏ hơn dung tích đập Sông Tranh 2. Sự kiện này đã gia tăng sự hiểu biết về mạng lưới các đới đứt gãy động đất tiềm ẩn phía Nam Grenoble.
Nhưng mãi đến năm 1966, ở đập Kremasta (Hy Lạp) cao 147 m, dung tích hồ nước 4800 triệu m3, lúc xảy ra trân địa chấn kích thích 6,2° Richter (chấn tâm ở 20 km dưới hồ), các chuyên gia mới bắt đầu lo sợ.
Sang năm 1967, ở đập Koyna (Ấn Độ) cao 103 m, dung tích hồ nước 2700 m3, một trận động đất kích thích 6° Richter cũng được diễn ra (chấn tâm ở 9 km dưới hồ). Nhiều nghiên cứu khác được thực hiện, nhân lúc đập Kariba (Rhodésie) cao 128 m, dung tích hồ nước 160 000 triệu m3, đón nhận hồ nước đầu tiên, kéo dài từ 1959 đến 1971. Trận địa chấn kích thích chính (6° Richter) xảy ra sau khi hồ đầy nước.
Sự tương quan giữa động đất và lúc hồ đón nhận dung tích nước đầu tiên được thể hiện qua vài chục trường hợp trên thế giới từ năm 1976.
Với những máy đo địa chấn, các kỹ sư đã theo dõi trường hợp đập Talbingo (Australie). Chỉ có một trận địa chấn nhỏ diễn ra trong vòng 13 năm, trước khi đập này đón nhận hồ nước đầu tiên. Tuy nhiên, sau đó, trong thời gian 15 tháng tiếp theo, có cả thảy hơn 100 địa chấn với cường độ tương đương. Điều đáng chú ý là với trận động đất chót 3,5° Richter, sau khi hồ đầy, tất cả những chấn tâm đều ở trên bề mặt, cạnh đập!
Hydro-Québec, với nhiều hồ lớn ở vùng phía bắc từ những năm 1950, cũng xác nhận đã gặp nhiều rung chấn kích thích. Một trận động đất kích thích cường độ 4,1 đã diễn ra vào tháng 10/1975 khi cho nước vào hồ Manic-3 ở Côte-Nord 2 .
Với 900 triệu m3 nước, hồ Zipingpu (Trung Quốc), chỉ nằm cách 500 m những đới đứt gãy, gây nên trận động đất kích thích ngày 12/05/2008, có thể là nguyên nhân khởi nguồn. Theo Xinglin Lei, Trung tâm vật lý thí nghiệm động đất ở Tsukuba – Nhật Bản, khối lượng hồ chứa nước đã làm tăng ứng suất dọc theo các đới đứt gãy. Áp lực gây ra bởi hồ này dọc theo các đới đứt gãy tương đương với áp lực của Ấn Độ lên lục địa Á châu trong vòng 25 năm!
Để hiểu vấn đề, cần phải biết mức độ thẩm thấu của vùng đứt gãy. Cũng cần chú ý rằng sự sụt giảm mực nước trong vòng 6 tháng, từ tháng 12/2007 đến tháng 5/2008 (từ 870 m xuống 817 m – tương đương với 650 triệu m3 nước), đã làm giảm ứng suất 0,1 bar. Giai đoạn đó lại trùng hợp với sự gia tăng chấn động mà đỉnh điểm là động đất lớn ngày 12/05/2008. Vì vậy, sự tháo nước đột ngột cũng có thể gây ra những vấn đề đáng lo ngại.
Ngược lại, động đất kích thích lại không thấy xuất hiện ở một số đập có hồ nước lớn, mặc dù xây cất ở những vùng có địa chấn như Californie hay Mexique.
Những trường hợp nêu trên, tôi đã có dịp trình bày trong cuốn sách giáo khoa về thủy điện (Energie hydraulique) mà tôi cùng ông Roger Ginocchio soạn thảo cho chuyên viên EDF và sinh viên các trường kỹ sư (do Eyrolles xuất bản)
Hiện tượng động đất kích thích chưa được giới khoa học chứng minh rõ ràng. Chúng ta cũng nên khiêm tốn và hết sức thận trọng khi kết luận, trong lúc chờ đợi các báo cáo khoa học nghiêm túc và chính xác của những chuyên gia địa chất.
Nên hạ thật gấp mức nước !
Phải để tính
mạng đồng bào lên trên hết.
Ta không thể đắn đo, cân nhắc
lợi hại với những triệu kWh tích
trữ trong hồ nước. Xả nước
một hồ rất lớn không phải một
vài ngày là xong. Ta nên cho 2 tổ
máy 190 MW.chạy liên tục, chẳng cần
đợi giờ cao điểm và tìm mọi
cách xả nước, để hạ gấp
mức nước.
Ta khó hình dung được sức mạnh khổng lồ của 730 triệu tấn nước thình lình ồ ạt đổ xuống hạ lưu, lôi cuốn dân chúng và tàn phá nhà cửa ruộng đất như tsunami ở Nhật Bản ngày 11/3/2011. Tôi xin mạn phép đưa ví dụ của đập Monteynard nêu trên, một đập vòm dày bằng bê tông (barrage voute épaisse) ở cách xa Grenoble 25 km. Đập nằm ở trên đồi cao 500 m, dài 230 m, cao 135 m, đón nhận dung tích nước (275 triệu m3) lần đầu tiên vào năm 1963. Công suất thiết kế nhà máy là 360 MW.
Với sinh viên, chúng tôi đã làm bài toán để đo lường hậu quả, trong trường hợp đập Monteynard rủi ro bị vỡ tan trong giây phút (rupture totale et instantanée): làn sóng cao từ 8 đến 12 m sẽ đến Grenoble sau 40 – 58 phút và sông Isère sẽ cao thêm 7 m. Đập Sông Tranh 2, có dung tích hồ 730 triệu m3 (tức lớn hơn Monteynard 2,65 lần) chỉ cách thị trấn Trà My 7,5 km thôi.
Nếu không hạ mức nước gấp thì làm sao kiểm tra nghiêm túc để đưa ra biện pháp xử lý đúng đắn kịp thời? Ta nên biết rằng ở Pháp, những quy chế khắt khe về những cấu trúc tháo nước ở đáy (vidange de fond) là : giảm 50% sức đẩy của nước (poussée de l'eau) vào thân đập trong thời gian 8 ngày (với giả thuyết không cho nước đổ vào hồ) và tháo nước toàn bộ (vidange totale) của hồ trong vòng 21 ngày với những điều kiện trên.)
Tôi đề nghị nên mời gấp chuyên gia tư vấn quốc tế, độc lập, đến khảo sát tỉ mỉ và góp thêm ý kiến
Mặc dù chưa biết chính xác nguyên nhân và những biến chuyển quan trọng trong thân đập, nhưng sự cố đã xảy ra như thế là một cảnh cáo hết sức quan trọng. Ta chớ nên coi thường !
Nếu tình trạng nguy hiểm kéo dài, một thảm họa rùng rợn có thể diễn ra ở miền Trung, gây bao tang thương cho đồng bào. Tạo hóa vô thường, đập Sông Tranh 2 đã suy yếu phần nào, có thể tan vỡ thình lình, trước mùa lũ lớn, nếu rủi ro xảy ra một trận động đất lớn trong khu vực.
Làm sao tránh các sự cố ?
Muốn
các đập thủy điện khỏi có
sự cố quan trọng và được an
toàn, thì ta phải tổ chức một
cơ quan kỹ thuật trung ương đầy
đủ dụng cụ máy móc tinh xảo,
để kiểm tra tất cả các đập
và nhà máy lớn, tăng hiệu suất
khai thác và kịp thời báo động
cho dân chúng, khi có sự cố nguy hiểm
đến tính mạng.Muốn
làm chủ toàn bộ các nguy cơ,
cần phải lắp đặt các cảm
biến (capteurs) gắn với thiết bị báo
động và các mô hình toán
học phức tạp.
Thí dụ ở EDF Grenoble, tại Nha kỹ thuật tổng quát DTG (Division Technique Générale) nơi tôi làm việc những năm đầu tiên ở Pháp, người ta có lập sở thủy lợi (để đo lưu lượng) và sở nghe bệnh đập (Auscultation des barrages). Ngay từ thời đó, nhiều đo đạc (dịch chuyển, sự biến dạng, áp lực, lưu lượng, rò rỉ…) được lưu trữ hằng năm với số lượng lên đến hằng trăm ngàn. Việc lưu trữ và xử lý các đo đạc này ngày nay được thực hiện nhanh chóng nhờ các công cụ tin học mạnh.
Đập không phải là một cơ cấu bêtông hay đất đá chết. Xung quanh và trong lòng mỗi đập đều có đường hầm, máy móc dụng cụ, cho phép ta kiểm tra và nghe hơi thở đập một cách tự động và liên tục.
Thời gian chảy đá mòn sông núi lở, thì mỗi năm các đập cũng có thể di dịch. Dưới tác động của việc đổ đầy hồ chứa và nhiệt độ, các đập có thể dịch chuyển về phía thượng lưu hay hạ lưu. Những hiện tượng này gây nên bởi các nguyên nhân bên ngoài nhưng cũng có thể liên quan đến bản chất của các vật liệu xây dựng công trình.
Sự vỡ đập thông thường xảy ra sau một quá trình suy yếu kéo dài từ vài ngày đến vài tuần (trừ những trường hợp vỡ tức thời như đập Malpasset của Pháp). Những dấu hiệu báo trước cho phép hoặc tháo nước (trường hợp đập Sông Tranh 2 ?) trong hồ hoặc di tản dân chúng bị đe dọa.
Tóm lại, 3 lý do chính gây ra sự cố và tai biến là :
-
Động đất
-
Lần đầu tiên cho nước vào đập (1er remplissage).
-
Lũ hết sức đặc biệt (crue exceptionnelle)
Đập trọng lực (đặc biệt đá/đất) thuộc loại phổ biến nhất và cũng có nguy cơ nhiều nhất. Với loại đập đất và / hay đá, sợ nhất là nước lũ tràn ngập đỉnh, phá vỡ đập rất nhanh chóng.
Về lũ đặc biệt, lấy ví dụ hệ thống xả lũ (évacuateurs de crues) đập Hòa Bình, có khả năng xả lưu lượng 38 000 m3/s (lũ 10000 năm – crue décamillénaire), theo bài tính xác suất (calcul de probabilité). Tuy là lũ đặc biệt rất lớn, lâu lắm mới xảy ra một lần, nhưng nó cũng có thể xảy ra bất chợt nay mai, tùy theo sự biến chuyển của thời tiết
Ở đây ta thấy tầm quan trọng của hệ thống những trạm đo lưu lượng nước (stations de jaugeage des débits) rải rác trên khắp những con sông. Xây dựng một đập cần nghiên cứu kỹ thủy văn của con sông trong hàng chục năm về trước. Càng lâu, độ tin cậy thống kê càng lớn.
Theo các chuyên gia bên nhà, đập Sơn La được thiết kế với độ an toàn rất cao, có thể chịu đựng được động đất 8° Richter và dòng lũ sông Đà lên tới 48 000 m 3/giây !
Tuy nhiên, như tôi đã có dịp trình bày và đã lưu ý bên nhà, điều tôi lo ngại nhất là đập Sơn La nằm trong vùng có thể bị động đất. Những vệ tinh đã phát hiện vết nứt (faille) sông Hồng dài 1000 km từ Tây Tạng đến khu miền Bắc và về phía nam, dọc theo bờ biển nước ta. Vết nứt trượt (coulissant) theo đường rãnh, trung bình 1 cm mỗi năm, có thể làm xê dịch từng cơn : sông, thung lũng, bãi phù sa… mỗi khi có động đất đáng kể.
Như một số chuyên gia khác, tôi đặc biệt lo sợ cho công trình Sanxia- Barrage des Trois Gorges- của Trung Quốc. Đây là một công trình vĩ đại nhất, có một không hai !
Để có thể so sánh, sau đây là những đặc điểm cần biết : đập trọng lực bêtông, ở trên sông Yangtsé, cạnh Yichang. Chiều dài 2335 m, cao 185 m, dung tích hồ 45,3 tỷ m3 nước. Tổng công suất của 32 tua bin là 22500 MW, lớn hơn 2,5 lần công suất thiết kế của tất cả những nhà máy thủy điện của ta hiện nay và tương đương vói công suất thủy điện Pháp. Sản lượng điện hàng năm là 84,7 TWh (tỷ kWh). Khởi công từ 1994, nhà máy bắt đầu vận hành từ 2006 - 2009. Kinh phí đầu tư có thể lên đến 50 chục tỷ đôla
Đối
với động đất, có thể nói
rằng các đập Nhật Bản, trang bị
với những máy đo địa chấn
tinh xảo, tương đối, ít có
sự cố, so với các nước khác.
Trái lại, Trung Quốc có khoảng 400
đập và hồ nước thiếu an
toàn !
Danh sách vài đập bị tai nạn trên thế giới (mỗi năm có một vài đập bị tan vỡ!)
Nước |
Tên đập |
Loại đập |
Nguyên nhân tai nạn |
Số người thiêt mạng |
Năm |
Algérie |
Habra |
Vòm |
Lũ lớn |
400 |
1881 |
Mỹ |
South Fork |
Đất |
Lũ lớn tràn ngập đỉnh |
2200 |
1889 |
Ý |
Gleno |
Vòm phức tạp |
Áp lực ở dưới (souspression) |
500 |
1923 |
Mỹ |
San Fran sisco |
Trọng lực (bê tông) |
Áp lực ở dưới (sous-pression) |
450 |
1929 |
Pháp |
Malpasset (Fréjus) |
Vòm mỏng |
Đá móng tả ngạn bị nứt |
423 |
1959 |
Brésil |
Oros (Ceara) |
Đất |
Lũ lớn trước khi công trình hoàn thành |
1000 |
1960 |
Ý |
Vaiont |
Vòm |
Sụt lở đá làm nước tràn ngập |
3000 |
1963 |
Chili |
El Cobre |
Đá |
Động đất |
200 |
1965 |
Ấn Độ |
Koyna |
Trọng lực (bê tông) |
Động đất kích thích (séisme induit) |
180 |
1967 |
Tôi xin phép vắn tắt nhắc lại thảm họa rùng rợn của đập Malpasset (thuộc Bộ Nông nghiệp Pháp)
Đầu mùa đông năm 1959, mưa dữ dội làm đầy lần đầu tiên đập mới xây Malpasset, ở cạnh thành phố Fréjus (Côte d'Azur) miền Nam nước Pháp. Khi đập này vỡ bất ngờ vào ngày 2/12/1959 lúc 21h13, gần 50 triệu m3 nước tràn ra, tàn phá ruộng đồng và làng mạc cho đến tận biển. Đây là thảm họa lớn nhất (423 người thiệt mạng) xảy ra ở Pháp. Cơn sóng khổng lồ cao 40 m tràn ra trong thung lũng hẹp, với tốc độ 70 km/h. Sau khi quét sạch những gì trên đường đi qua, nó đến Fréjus 20 phút sau đó, trước khi đổ ra biển.
Trận động đất 6,6° Richter, diễn ra năm 1971, ở đập trọng lực đắp (barrage poids en remblai) Lower San Fernando ( California), chiều cao 40 m, với một dung tích nhỏ, chỉ 15 triệu m3 thôi, đã làm lún đỉnh 8,5 m và di tản 80000 dân !
Năm 1975, đập Banqiao ở Trung Quốc, bị động đất và lũ lớn, đã cướp 26000 tính mạng !
Hiện nay ở Thuỵ Sĩ, dân chúng ơ vùng hạ lưu đập Grande Dixence, cao 285 m , dài 748 m, dung tích 400 triệu m3 nước (nhỏ hơn hồ Sông Tranh 2) rất lo sợ, vì vùng Le Valais đã bị 200 rung chấn nhỏ năm 2011 và 40 từ đầu năm nay.
Việt Nam đã gia nhập ICOLD (International Commission On Large Dams – Uỷ Ban quốc tế các đập lớn). Những kinh nghiệm trao đổi nơi đây vô cùng quý báu. Để đề phòng động đất, Uỷ Ban này khuyên bảo 85 nước thành viên nên thiết kế đập để có thể chống địa chấn với cường độ của trận động đất xảy ra 10000 năm về trước, cộng thêm 2° Richter.
Bản so sánh Sơn La với các đập lớn trên thế giới
(Những
con số gạch dưới gần giống các
con số của Sơn La)
Tên đập |
Chiều cao (m) |
Tên sông |
Loại đập |
Hồ chứa (tỷ m3) |
Công suất (MW) |
Năm khánh thành |
Bratsk |
125 |
Angara (Liên Xô) |
Trọng lực bê tông và đá |
169 |
4600 |
1964 |
Assouan |
125 |
Nil (Ai Cập) |
Trọng lực đất và đá |
164 |
2100 |
1970 |
Tarbela |
143 |
Indus (Pakistan) |
Trọng lực đất và đá |
13,7 |
2100 |
1976 |
Nurek |
317 |
Vakhsh (Liên Xô) |
Trọng lực đất |
10,4 |
2700 |
1977 |
Sơn La |
138 |
Sông Đà (Việt Nam) |
Trọng lực bê tông |
9,26 |
2400 |
2010-2012 |
Chương trình thủy điện Việt Nam quá tham vọng
Từ hơn 20 năm nay,
nhất là từ 2000 trở đi, Việt Nam
đã xây cất hàng loạt đập
và nhà máy thủy điện lớn
nhỏ với một tốc độ nhất nhì
thế giới, chỉ thua Trung quốc. Chương
trình phát triển thủy điện Việt
Nam quá tham vọng, ồ ạt, cấp bách,
không phù hợp với một chiến lược
dài hạn, thiếu phân tích khoa học,
bài toán kinh tế. Ta có vẻ coi nhẹ
môi trường và chưa nghiên cứu
tỉ mỉ về thảm họa có thể
xảy ra đối với đồng bào sinh
sống ở hạ lưu, dưới sự đe
dọa thường trực của những quả
bom nước đó đây. Tôi có
cảm tưởng như để chứng minh
với chính quyền là ta hết thủy
điện nên mới cần điện hạt
nhân !
Ở Việt Nam, nhiều công trình bậc thang đã có vấn đề với nhiều lý do dễ hiểu. Ta có bệnh thiết kế và thi công nhanh (cẩu thả, không đúng tiêu chuẩn kỹ thuật) để được khen thưởng, chưa nói đến nạn tham nhũng còn tung hoành. Tuy ta có nhiều chuyên gia thủy lợi, điện lực và công chánh giàu kinh nghiệm quý báu, nhưng việc kiểm tra chu đáo những công trình kiến trúc lớn không phải dễ.
(*) Một số ý kiến của bài này đã được trình bày trong hai bài phỏng vấn của các đài RFI và RFA, tác giả gửi cho Diễn Đàn sau khi sửa chữa và bổ sung.
Grenoble ngày 2-4-2012
Nguyễn Khắc Nhẫn
Nguyên Giám đốc
và GS Trường Cao đẳng Điện
học và Trung tâm Quốc gia Kỹ thuật
Phú Thọ
Cố
vấn Nha kinh tế, dự báo, chiến
lược EDF Paris,
GS
Viện kinh tế, chính sách năng lượng
Grenoble,
GS
Trường Đại học Bách khoa Grenoble
Tài liệu tham khảo
:
-
Nguyễn Khắc Nhẫn, Nguyễn Trần Thế, Michel Hồ Tá Khanh - L’hydroélectricité au Viet Nam- Revue de l’Energie – Paris N°546 , 5/ 2003 ,
-
Roger Ginocchio, Nguyễn Khắc Nhẫn - Energie hydraulique, Direction des Etudes et Recherches d' EDF – Eyrolles, 1978
-
Nguyễn Khắc Nhẫn - Energie hydraulique – Economie et Planification de l'énergie, INPG et IEPE- 1994
Các thao tác trên Tài liệu